All mutually unbiased bases in dimensions two to five
نویسندگان
چکیده
All complex Hadamard matrices in dimensions two to five are known. We use this fact to derive all inequivalent sets of mutually unbiased (MU) bases in low dimensions. We find a three-parameter family of triples of MU bases in dimension four and two inequivalent classes of MU triples in dimension five. We confirm that the complete sets of (d+1)MU bases are unique (up to equivalence) in dimensions below six, using only elementary arguments for d less than five.
منابع مشابه
New construction of mutually unbiased bases in square dimensions
We show that k = w + 2 mutually unbiased bases can be constructed in any square dimension d = s provided that there are w mutually orthogonal Latin squares of order s. The construction combines the design-theoretic objects (k, s)-nets (which can be constructed from w mutually orthogonal Latin squares of order s and vice versa) and generalized Hadamard matrices of size s. Using known lower bound...
متن کاملReal Mutually Unbiased Bases
We tabulate bounds on the optimal number of mutually unbiased bases in R. For most dimensions d, it can be shown with relatively simple methods that either there are no real orthonormal bases that are mutually unbiased or the optimal number is at most either 2 or 3. We discuss the limitations of these methods when applied to all dimensions, shedding some light on the difficulty of obtaining tig...
متن کاملConstructions of Mutually Unbiased Bases
Two orthonormal bases B andB′ of a d-dimensional complex inner-product space are called mutually unbiased if and only if |〈b|b〉| = 1/d holds for all b ∈ B and b′ ∈ B′. The size of any set containing pairwise mutually unbiased bases of C cannot exceed d + 1. If d is a power of a prime, then extremal sets containing d+1 mutually unbiased bases are known to exist. We give a simplified proof of thi...
متن کاملMutually Unbiased bases: a brief survey
Mutually unbiased bases have important applications in Quantum Computation and more specifically in quantum state determination and quantum key distribution. However these applications rely on the existence of a complete set of such bases. Even though they’re being studied since the 1970’s the problem of finding a complete set of mutually unbiased bases is only solved for dimensions which are a...
متن کاملClassifying all Mutually Unbiased Bases in Rel
Finding all the mutually unbiased bases in various dimensions is a problem of fundamental interest in quantum information theory and pure mathematics. The general problem formulated in finitedimensional Hilbert spaces is open. In the categorical approach to quantum mechanics one can find examples of categories which behave “like” the category of finite-dimensional Hilbert spaces in various ways...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Quantum Information & Computation
دوره 10 شماره
صفحات -
تاریخ انتشار 2010